Reversible Regular Languages and *-Semigroups

Paul Gastin* Amaldev Manuel* <u>R Govind</u>*

LSV, ENS Paris-Saclay, CNRS Indian Institute of Technology, Goa LaBRI, University of Bordeaux Chennai Mathematical Institute

> 7 August 2019 DLT 2019

> > ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Reversible regular languages

Reverse Operation (r)

If $w = a_1 a_2 \cdots a_n$, $w^r = a_n \cdots a_2 a_1$

Reverse operation is an involution, *i.e.*, $(w^r)^r = w$

 L^r is the reverse operation extended to languages

```
L is a reversible language if L = L^r
e.g. (abc)^* + (cba)^*
```

Regular languages Directed words

 $a \rightarrow b \rightarrow b \rightarrow a \rightarrow b$

Reversible regular languages Undirected words

a-b-b-a-b

Our Goals

Good logical characterizations for reversible regular languages and its well-behaved subclasses

Effective decision procedures for these logics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Classical results (on directed words)

Schützenberger'65, McNaughton-Papert'71

Brzozowski-Simon'71, Beauquier-Pin'91

Classical results (on directed words)

Our Predicates

Regular languages Directed words Reversible regular languages Undirected words

 $a \rightarrow b \rightarrow b \rightarrow a \rightarrow b$

a-b-b-a-b

For undirected words, we introduce analogues of successor relation and order relation:

- **Neighbour** N(x, y) is true when x and y are neighbours
- **Between** bet(x, y, z) is true when y is in between x and z

Our Results

Between predicate¹

bet(x, y, z) := x < y < z or z < y < x.

¹A variant of the between predicate was studied by Andreas Krebs, Kamal Lodaya, Paritosh Pandya, Howard Straubing (2016)

Between predicate: Examples

Occurrence of subword or its reverse

Contain the subword "abc" or "cba"

 $\exists x \exists y \exists z \ \mathsf{bet}(x, y, z) \land a(x) \land b(y) \land c(z)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Between predicate: Examples

Occurrence of subword or its reverse

 $\exists x \exists y \exists z \ \mathsf{bet}(x, y, z) \land a(x) \land b(y) \land c(z)$

• Contain the subword $a_1a_2\cdots a_n$ or $a_na_{n-1}\cdots a_2a_1$.

$$\exists x_1 \exists x_2 \cdots \exists x_n \bigwedge_{i=1}^n a_i(x_i) \land \bigwedge_{i=2}^{n-1} bet(x_{i-1}, x_i, x_{i+1})$$

Neighbour predicate

$$N(x, y) := x + 1 = y \text{ or } y + 1 = x.$$
end₁ ... x y ... end₂ OR end₁ ... y x ... end₂

Neighbour predicate: Examples

Occurrence of a factor or its reverse

"ab" or "ba" occurs as factor

 $\exists x \exists y \ \mathsf{N}(x,y) \land a(x) \land b(y)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Neighbour predicate: Examples

Occurrence of a factor or its reverse

 $\exists x \exists y \ \mathsf{N}(x,y) \land a(x) \land b(y)$

• Contain the factor $a_1a_2\cdots a_n$ or $a_na_{n-1}\cdots a_1$

$$\exists x_1 x_2 \cdots x_n \bigwedge_{i=1}^n a_i(x_i) \land \bigwedge_{i=1}^{n-1} \mathsf{N}(x_i, x_{i+1}) \land \bigwedge_{i=2}^{n-1} (x_{i-1} \neq x_{i+1})$$

Neighbour predicate: Examples

Occurrence of a factor or its reverse

 $\exists x \exists y \ \mathsf{N}(x, y) \land a(x) \land b(y)$

• Contain the factor $a_1 a_2 \cdots a_n$ or $a_n a_{n-1} \cdots a_1$

$$\exists x_1 x_2 \cdots x_n \bigwedge_{i=1}^n a_i(x_i) \land \bigwedge_{i=1}^{n-1} \mathsf{N}(x_i, x_{i+1}) \land \bigwedge_{i=2}^{n-1} (x_{i-1} \neq x_{i+1})$$

Cannot express subword relation in FO using the 'Neighbour' predicate

MSO(bet) = MSO(N)

'Between' predicate can be defined using 'Neighbour' predicate (and second order quantification).

Any subset U of positions that satisfies the conditions (1) and (2), contains y

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1. U contains x, z and some other position.
- 2. any position in *U*, except for *x* and *z* has exactly two neighbours in *U*.

MSO(bet) = MSO(N)

'Neighbour' predicate can be defined in terms of the 'Between' predicate

$$\mathsf{N}(x,y) \equiv (x \neq y) \land \forall z \neg \mathsf{bet}(x,z,y)$$

 'Neighbour' using 'Between' - can be expressed using this first order macro

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 'Between' using 'Neighbour' - requires second order quantification MSO(bet) = MSO(N) = Rev-Reg

Theorem

The following are equivalent:

- 1. L is a reversible regular language
- 2. L is definable in MSO(bet)
- 3. L is definable in MSO(N)

Proof sketch

(1) \implies (2) Let $\varphi \in MSO(<)$ defining L.

$$\chi = \exists e \; (\psi(e) \land \varphi'(e))$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\psi(e)$ says that e is an endpoint: $\neg \exists x, y \text{ bet}(x, e, y)$ φ' is φ with x < y replaced by $(e = x \neq y) \lor \text{bet}(e, x, y)$

Our Results

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$u \approx_k^t v$ equivalence

- ▶ same prefix of length k 1.
- ▶ same suffix of length k 1.
- same number of factors of size k up to threshold t.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: $abababab \approx_2^2 ababab$

$u \approx_k^t v$ equivalence

- ▶ same prefix of length k 1.
- ▶ same suffix of length k 1.
- same number of factors of size k up to threshold t.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: $abababab \approx_2^2 ababab \not\approx_2^2 abbab$

$u \approx_k^t v$ equivalence

- ▶ same prefix of length k 1.
- ▶ same suffix of length k 1.
- same number of factors of size k up to threshold t.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: $abababab \approx_2^2 ababab \approx_2^2 abbab$ $abababab <math>\approx_2^3$ ababab

$u \approx_k^t v$ equivalence

- ▶ same prefix of length k 1.
- ▶ same suffix of length k 1.
- same number of factors of size k up to threshold t.

```
Example: abababab \approx_2^2 ababab \not\approx_2^2 abbab 
abababab \not\approx_2^3 ababab
```

L is locally threshold testable if *L* is a union of \approx_k^t classes, for some t, k > 0.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Examples:

- Locally Threshold Testable language: (ab)*
- Not locally threshold testable : c* a c* b c*

Is $FO(N) = FO(+1) \cap Rev$?

Clearly, $FO(N) \subseteq FO(+1) \cap Rev$ But this inclusion is strict.

Example:

 $L = \{w \mid \#(ab) = 2$, #(ba) = 1 OR #(ab) = 1 , #(ba) = 2 }

 $L \in FO(+1) \cap Rev$, but $L \notin FO(N)$

 $c^k ab c^k ba c^k ab c^k$ $c^k ab c^k ab c^k ab c^k$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

FO(N) = Locally-Reversible Threshold Testable Languages

$u \approx_{k}^{r} v$ equivalence

▶ same undirected ends of size k - 1 {prefix, suffix^r}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

same undirected factors of size k up to threshold t

Examples:

- ▶ abbabab ≈^r2 babba
- ▶ aba 🛱 baa

FO(N) = Locally-Reversible Threshold Testable Languages

$u \approx_{k}^{r} v$ equivalence

- ▶ same undirected ends of size k 1 {prefix, suffix'}
- same undirected factors of size k up to threshold t

Examples:

- ▶ abbabab ≈2² babba
- ► aba 🖗12 baa

L is locally-reversible threshold testable if *L* is a union of $\approx_k^{r} t_k$ classes, for some t, k > 0.

FO(N) = Locally-reversible Threshold Testable Languages

Proof sketch

(\Leftarrow) Since *L* is a union of $\stackrel{r}{\approx}_{k}^{t}$ -classes, we write an FO(N) formula for each $\stackrel{r}{\approx}_{k}^{t}$ -class.

Recall : occurrence of a factor or it's reverse \rightarrow expressible in FO(N).

Similarly, we can say that x or x^r occurs at least m times in w.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 (\Rightarrow) Hanf's theorem

Our Results

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

Are there effective decision procedures for these logics?

Given a regular language L, is it decidable if L is definable in the logic?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- * ロ * * 母 * * 目 * * 目 * * の < @

*-semigroup or Semigroup with involution

A *-semigroup is a triple (S, \cdot , *), where

• (S, \cdot) is a semigroup

▶ $\star : S \rightarrow S$ is an involution on *S*, i.e, $\forall x \in S$,

$$(x^{\star})^{\star} = x$$

▶ ★ is an anti-automorphism on *S*, i.e, $\forall x, y \in S$,

$$(x\cdot y)^{\star} = y^{\star} \cdot x^{\star}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: Free monoid A^*

The reverse operation is an involution on the free monoid that is an anti-automorphism, since

•
$$(w^r)^r = w$$

• $(w_1 \cdot w_2)^r = w_2^r \cdot w_1^r$

Acceptance by *-semigroups

A language $L \subseteq \Sigma^*$ is said to be recognized by a *-semigroup (S, \cdot, \star) , if there is a morphism $\phi : \Sigma^* \to S$ and a set $P \subseteq S$, such that the following conditions are satisfied:

1.
$$L = \phi^{-1}(P)$$

2. ϕ is a \star -semigroup morphism *i.e.*,

$$\phi(x \cdot y) = \phi(x) \cdot \phi(y)$$
 and $\phi(x^r) = (\phi(x))^*$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3. $P^* = P$

Alternate decision procedures for MSO(*bet*) and FO(bet)

▲□▶▲圖▶▲≣▶▲≣▶ ■ めんの

Our Results

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

Identity for FO(+1) languages

Theorem (Brzozowski-Simon 1973, Beauquier-Pin 1991)

The following are equivalent:

- 1. L is locally threshold testable.
- 2. $L \in FO(+1)$.
- 3. The syntactic semigroup of L is finite and aperiodic and satisfies the identity, for all $e, f, x, y, z \in M(L)$ with e, f idempotents,

$$e \mathbf{x} f \mathbf{y} e \mathbf{z} f = e \mathbf{z} f \mathbf{y} e \mathbf{x} f$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Identity for FO(N) languages

The syntactic \star -semigroup of a FO(N)-definable language satisifes the identities, for any elements e, f, x, y, z of the semigroup with e, f idempotents,

$$e x f y e z f = e z f y e x f$$

 $e x e^* = e x^* e^*$

Proof sketch

Let $h: \Sigma^+ \mapsto M = (\Sigma^+/\sim_L, \cdot, \star)$ be the canonical morphism recognising *L*. Let $u, s \in \Sigma^+$ s.t. h(u) = e and $h(s) = x \implies h(u^r) = e^*$ and $h(s^r) = x^*$ Let $w = (u^k)s(u^k)^r$ and $w^r = (u^k)s^r(u^k)^r$ $h(w) = h(usu^r) = exe^*$ and $h(w^r) = h(us^ru^r) = ex^*e^*$ For all contexts $\alpha, \beta \in \Sigma^*$, we can show that $\alpha w \beta \approx_k^r \alpha w^r \beta$,

$$\alpha w \beta \in L \text{ iff } \alpha w' \beta \in L$$
$$h(w) = h(w')$$
$$exe^* = ex^*e^*$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Our Results

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Conclusion

Reversible regular languages and their well-defined subclasses are characterized by logics using the 'between' and 'neighbour' predicates

MSO(bet), MSO(N) and FO(bet) behave like MSO(<), MSO(+1) and FO(<), respectively.

FO(N) corresponds to the class locally-reversible threshold testable languages.

*-semigroups are the algebraic structures that recognize reversible regular languages.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・